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BY 
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ABSTRACT 

Jenscn showed that any countable sequence ,4 of A-admissibles is the initial 
part of the admissibility spectrum of a real R. His construction generalizes 
straightforwardly to Z~-admissibles. This adaptation makes admissibles not 
in A R-inadmissible. We strengthen Jensen's theorem by requiring that 
Z,(A)- admissibles not in A be Zm (R)- admissible or Zm (R)- non-projecdble, 
for m <n. 

§1. Introduction and preliminaries 

An ordinal a is admissible if  Lo ~ ~-~'1 Replacement and A-admissible 

(A C O R D )  ifL,[A ] g Y I(A) Replacement. Various results connect admissible 

ordinals with reals. If  a is a countable admissible, then there is an R c to such 

that ot is the first R-admissible greater than to (or -- to~). (See Barwise [B], Sacks 

[Sa], and Steel [St] for three different proofs.) There have been different kinds 

of  generalizations of  this result. S. Friedman IF1, F2] considers uncountable 

admissibles. Jensen [J] realizes a countable sequence A of  countable A- 

admissibles as the initial segment of  R-admissibles for some real R.  Sacks [Sa] 

finds a solution to ot ffi to~ minimal in the hyperdegrees, and the author [L] 

investigates realizing a Jensen-type sequence with minimality at many ordi- 

nals. Most of  these theorems generalize to Y-n admissibles (ordinals a such that 

L .  ~ ~n Replacement). 

Another strengthening of  Jensen's theorem concerns the ordinals not in A. 

Using the obvious adaptation of  Jensen's proof  for realizing a sequence A of  

~ (A) -  admissibles, the Y.~(R)- admisibility of  a E ORD/A is destroyed by 
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sending an co-sequence through it. This renders it not only Y, (R )- inadmissible 
but also Y~(R)-inadmissible. Here we show how to clean up spectra while 
treating the undesirables with gentleness. 

The motivation is to kill the Y., closure properties of o~ ~A while preserving 
the Y m closure, for an arbitrary m < n. Phrased this way, the problem becomes 
more involved, since the intuition of Zm closure can be expressed in different 
ways. Here we consider Ym-admissibility and Y~m-non-projectibility. Our con- 
struction breaks into two cases, depending on whether we want to preserve 
both Y m-admissibility and non-projectibility, or just Y~m-admissibility while 
destroying ~:m- non-projectibility. 

We conclude with a proof indicating an asymmetry between the two cases, 
and some questions. 

For more detail and proofs regarding the basic material summarized below, 
see [D] and [MS]. 

Definitions 

(X, e) is Y~-admissible if (X, e) g ZF-Power-Replacement + A. Com- 
prehension + A. Bounding + Foundation for definable classes 

ot~ORD is Y.~-admissible if (L~, t)  is Y..-admissible (equivalently, L~ ~ E. 
Replacement) 

aEORD is E~-non-projectible if L~ ~ "There is no E.-definable 1-1 func- 
tion from V into a set" 

~:.-Adm = {a]a is Zradmissible} 
Z.-NP -- {or I a is Y.~-non-projectible} 
& -- least primitive recursive closed fl > a 
fl is Y~,(a)-stable if Lp < z. L~ 
The g,-projectum of a (p~) is the least ]/such that 

1-! 
3fEZ.(L=) f :  ct , / /  

A c p~ is a E.(Lo) Master Code if 

VB cp~ BEA.+m(L~) iff BEA~(Lp:[A]). 

If ~ is partial order definable over L~, G C_ ~ is ~-generic (over L~) if G 
intersects every dense subset of ~ definable over L~. 

PROPOSITION (folklore). (1) If aEZ.-Adm then a ~ E ~ A d m  and aE 
~m-NP, Vm < n .  

(2) IfaEZ~-Adm and p is Z.(a)-stable, then p EZ~-Adm. 
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(3) / f a E  Y~n-Adm then a is the limit of a-many ~,n-,(a)-stables. 

PROPOSITION (folklore). Suppose L~ ~ "There is a largest cardinal". Then 
(1) aEZ~-NP iff a is a limit o f  F.n(a)-stables. 
(2) aEZ,-Adm iff L~ ~ An Comprehension. 

aEZ~-NP iff L~ ~ F.n Comprehension. 

The primary step in proving these is taking the canonical Zn Skolem hull of 
some fl < a in La. The Skolem function is ~n, so ifa is Zn non-projectible then 
the hull is not all ofLa. Furthermore, iffl > largest a-cardinal, then the hull is 
L~ for some 7. The advantage of assuming a largest cardinal is that the closure 
properties o f  admissibility and non-projectibility form a linear hierarchy 
(Y-n Adm < Yn NP < y.n +, Adm), with each ordinal of a class being a limit of 
ordinals from the next lower class. This is not true in general, as No, is fully 
non-projectible yet Z2 inadmissible. How can we ensure that there always is a 
largest cardinal? 

PROPOSITION (folklore). (1) Let I C a be A,(L~). Let ~' be the product (with 
finite support) of  the (finite) Levy collapse of  each iE1 to co: p ~  ~ iff 
dom(p) c_ I is finite and p(l) : n ~ l is 1-1,for some n ~co. Then ~ preserves 
Yn admissibility: i f  aEZn-Adm and G is ~-generic, then a is 
~.n(G)-Admissible. 

(2) Let I C_ ORD be A~ uniformly over admissible ordinals. Let ~ be 
as above, and ~ be (~)~.  Let fl < a  and Ga be ~-generic. Then G# -- 
Go N (fl X to X fl) is ~)rgeneric. 

To see part (1), note that [~- is definable: ifrk ¢ <7 ,  ~0 a bounded formula, 
then p [~- (o iff p N (7 X to × Y) ]~- (0 (shown inductively on formulae), so 
[[-r ~ X Ao is A~. If p ][-¢ is a total ~ function, then bound rug (0 by the 

following co-step process. At stage n + 1, for each q E ~ , ,  x ~ dom¢,  let q' < q 

force a value x(q') for (o(x). Let an +i bound the L-ranks of the q's and x(q')'s. 
This construction is bounded by Zn admissibility. After co many steps we have 
a pre-dense set forcing rng ¢ into a set. 

The second part is true because the components are independent of 
one another: if D_C~# is dense, then { p ~ l ( p r f l X c o X f l ) ~ D }  is 
dense in ~ .  

All of the preceding definitions, propositions, and proofs relativize to 
A CORD. 
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§2 

THEOREM 1. Let A be a countable sequence of countable Y~.(A)-admiss- 
ibles. Let m < n. There is an R c_ o9 such that V a <= sup A 

(1) aEZ,(R)-Adm iffaEA. 
(2) l f  aEZ.(A )-AdrrdA then aEZ,~(R )-NPI~.m + ,(R )-Adm. 
(3) l f k  < n and aEZk(A)-AdmlE.(A)-Adm then aEI:k(R)-Adm. 

PROOF. Without loss of generality we can assume that V a (_-< sup A) 
L~ ~ a is countable. If this were not the case, let I = {a I L~ ~ a is uncoun- 
table}, and ~ be the Levy collapse of each ~ E I  N supA + 1. With G ~ -  
generic, work in L[G] just as we will be working in L. Similarly, we assume 
L. [A] = L. and Ek (A)-Adm = Ek-Adm, since the proof relativizes to L [.4]. 

To each Z. admissible a we will associate D. ___ a of ordertype a just as in 
Jensen's proof, to provide enough scratchwork for each ordinal we're con- 
cerned with. The predicate coding (D. la<supA)  will not affect 
~:.-admissibility or any weaker property. First we describe how to get suitable 
clubs of E.-inadmissibles. We use these to build the D.'s. The information 
making a Zm + r inadmissible is then coded onto D..  Finally, the predicate can 
be coded by a real. 

Clubs of Z..inadmissibles 

LEMMA 2. V a < sup A 3 C. C_ a such that 
(1) Ca is a club of Z..inadmissibles, 
(2) v#  _-< ~, c .  n # EL~, 
(3) if# < a, p E Z r A d m  then C. n p ~Lp, 
(4) if p <-_ a, # EZm-Adm(-NP) (m < n) then 

# E E,~ (CO-Adm(-NP). 

PROOf. Ca is any generic for the appropriate forcing ~ over Lo. Note that 
by our assumption of countability, such generics exist in L~. 

Inductively on a, let ~ be { p I P is a closed set of Y.,-inadmissibles bounded 
in a such that (2) and (3) from above hold, and ifp -_< sup p is Y~m- admissible or 
-non-projectible then p N p is bounded in p or ~-generic over Lp}. _-< is 

end-extension. 
Clearly, any ~-generic in L~ will satisfy (1)-(3).  To show (4), we must show 

that ~ preserves Zm-admissibility and -non-projectibility. 
I f~ is Ao, letp ~- q~ iffsup p > rk (0 and L[p] ~ ~o. Extend I~" to ~ formulae 

as usual: p II- 3 x ~o(x) i f  3 x p II- ~(x);  for 9 unranked, p ll- -1 ~ i f  V q < p 
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q IV ~. IF is dense in the standard notion of forcing [is,: ifp Iht ~then 3 q < p 
q IJ- ~- So I}- suffices for our forcing relation, and is definable: IJ" r ~ X Z, (11.) 
is £.(I-I.). 

Suppose ¢~ is El-admissible, and p_ i[}- V n ~ ¢o 3 x. ~(n, x.). Let Pi be the 
least p =<- p~-1 such that thatp IF ¢(i, ti), for some term t~ of rank < sup p~. Let 
q - - U p i ,  sup q is inadmissible, as ( p i [ i E ~ )  is A,(L,.pq). Therefore q'= 
q U {sup q} _-< pand  q' ]~- VnEoJ 3~qx.  ~(n, x.). 

Suppose aEZ~-NP. Let ~ be Y.,., p ~ ~ .  We must show Z,. comprehension 
holds for L.[Ga]; it suffices to find a q < p such that V n q II Let ~8 be the 
least Z,.(a)-stable greater than rk ~. Let q' < p be ~-generic over Lp, q 'EL h. 
Let q -- q' U {]/}. q will decide each ~(n) : Vn 3 7q N 7 IIL, c0(n). Moreover, 

q n ~ IJ-~ ~(n) (-~(n))  iff q n Z ] l-~(n) (a~(n)), 

by stability. Since ]/was the least stable beyond a given ordinal, it's not even 
£m-nOn-projectible, much less £.-admissible, so (3) is satisfied. 

Suppose a ~ £~- Adm, m > 1, ~ is r i  m _ i ,  and p ]~- V n E o~ 3 xn ¢0 (n, x.). Let 
ao = max(rk p, rk(parameters(~0))). VqE ~ N Lao, n Eo~ let q. < q, x. be the 
least such that q, ]J- ~(n, x. ~'). This operation has bounded range, say by ~0, by 
£.,. admissibility. Let a l be the least Y'm- l(a)-stable greater than ~8~ Continue as 
before, extending each q ~ ~ N La, to q. IJ- ~(n, x~'). Let ~ = Ua. .  As a limit 
of Zm-,(a)-stables, ao, is also £m- i(a)-stable. Also, for each n 

D.={elqll- 3x.~(n,x.)} 
is dense (in L J ,  by construction. Let q'< p, q'~L~, be ~.-genedc. q = 
q' o {ao,} is a condition, because a~ is 7_.~-inadmissible (since this construction 
is Am (La.)). Finally, 

q [~- V n ~/o ~ a-x. 9(n. x.). [] Lemma 2 

The D~'s 

Using the Ca's, we can inductively build predicates which assign a-many 
ordinals to each £.-admissible a. 

Let 7, = sup{p < v [p EZ,-Adm}, and 

0, ffi { f E  L~ I dom fffi y~ 
rag f =  (7, + I) N Z.-Adm 
V,~f(~)>~ 
Va {pp > a ^ f - I (p )  N a ~ 0 }  is finite 
letting Fbe  {(6, 6') If(6) -- f(6')} 
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ifaEZm-Adm (m <= n), La[f, F] is Zm-admissible 
ifaEZ~-NP (m < n), La[f, F] is Zm-np 
ifaEZ.-Adm then f-l(a) is unbounded in a 

ifaEZ.-Adm and ]~ > a then f-~(/~) r3 a is bounded in a}. 

In words, 0, consists of those functions (definable near v) which, to each 
Z.-admissible a =< v, assign a-many smaller ordinals (D~), keep the D~'s rather 
separate (last clause), and do not affect admissibility or non-projectibility (up 
to Z.-admissibility). 

LEMMA 3. l f  v' > v and f E O, then 3 f '  E O,, f '  D f . 

PROOF. By induction on v', starting with v. 

If 7,, < v', extend f t o  fr.,~ Or,,, and l e t f '  = fr,,. 
If 7v, = v' and 7v, is a successor Z.- admissible (after t say), let f _3 f ,  f E 0,, 

and let 

f ' = f , u { ( a , v ' ) l t < a < v ' } .  

If 7,, = v' is a limit of Z,-Adm and is itself Y,- inadmissible, let C,,-- 
(v j[ j  < v') be a club of Z,-admissibles from the previous lemma. Let f , , ,  _3 f~,, 

f,j+, E 0,,, be the least such, and if 2 is a limit let f,, -- U f,~. f,, E 0,, because 
of the nice properties of C,,. Let f '  -- U f~j. 

I fv '  is a limit of Y,-Adm in E,-Adm then we must also ensure that v' itself 
gets v'-many ordinals. Le t f '  = U f~, as in the previous case. Let 

f " ( a )  = 

p(a)  a C,,, 

v' aEC, , .  

We use property (3) in the definition of Ca to know that f "  - '(a) is unbounded 
in a, for aEI:~-Adm, n Lemma 3 

F i x f E  0,upA. Let De be f-~(a). Let 

F = { (a, a') l f(~) = f(a')}. 

Fixing an a 

Now we concentrate on how to reduce a given Z,-admissible a to a Y.m-np, 
~,~ + r inadmissible. Afterwards we can paste these predicates for different a's 
together using the Da's. 

Let ga C__ a be the least m-sequence cofinal in a. We will code ga into a 
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Y m-generic, Am + r definably. Genericity preserves I:m-np; definability uncodes 
g. in time to make a Y~m + rinadmissible. 

The forcing involved is Cohen forcing. Let 

-- {P -- 7 < a l  V$,p n 6EL~andSEEk-Adm(NP) 
iff$ EZk(p)-Adm(NP) (k < n)}. 

II- is defined as for ~ from Lemma 2. 
~ '  preserves Zk- admissibility and -non-projectibility Vk. The proof of this 

fact is exactly as the proof of the same for ~ .  
Let {at' I i < a} be the club Of Zm(a)-stables. Let pobe the least ~ ' -gene r i c  

over L,~.. poe ~ .  Let p~ = Po ifO ~g~, Po U {ao m} i fOE&. More generally, let 
p~ +, be the least 9 ~*r-generic through pf omitting a m if i ~ g,.  Let pa = U p~. Let 
p '  = p~ if i ~g~, p~ U {a m } if i Eg. .  Let p. -- Ups. 

I fa  m < fl < a ~  ~, then fl's admissibility or non-projectibility is preserved by 
pa, by the definition of ~,'÷,. Iffl -- a~', ;t a limit, fl is Ym(p.)-np: let ~ be y.m, 
rk~ < a  m <a~' .  p~ will decide each ~o(n) for ~ 7 .  By Em-elementarity, the 
same decisions are valid for ~ '~,  so in L~ 7 [ p.] ~0 can be evaluated in L~ r [ pa]. If 
fl = a~' is Ek-admissible or np (m < k < n), it will be Y.k(p.)-admissible or 
np" p~ tfl is Am +l(Lp) , because (ap [ i < 2 )  is Am +l(L~ ) and g~ tfl is finite. 

a itself is Em(Pa)-nP, for the same reason that the a~"s remain ~m(P.)-nP. 
However, a is Y~/+ i(p.)-inadmissible. (a m l i is Am+l(L3, so a can read 
off g. from p. in a Am +, way. 

The Final Predicate 

As a first approximation to the final predicate B __C_ sup A, spread each p~ 
along D~ to get p ' .  ( I f a ~ A ,  let p" = O .) Let 

Pffi U 
aE~.nAdm 

Let B = P ~  f ~  F. 
Recall that the last two components of /~ do not affect any ordinal's 

admissibility or non-projectibility. Also, a~-~Uv<ap ~ is A~(L,[f,F]) uni- 
formly in a, since the construction of the previous section is so simply defined. 
If a E E~- Adm, then D~, recoverable from/~'s third component, is either empty 
(and aEA) or it brings a down to where it's supposed to be. We must show 
only that for the finitely many p > a such that Dp N a ~ 0 ,  p~ does not really 
affect a. 

By B's third component, L~[~] can separate {~, < a I f (~ , )>  a} into finitely 
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many blocks. Each block separately will preserve a's closure, by the definition 
of the pp's. The only possible problem is in the combination of the (finitely 
many) p~'s. 

This construction must be altered to account for this problem. Instead of 
defining pp over Lp, with initial segments preserving the closure ofL~ (7 <fl), 
do it relative to the amount of B constructed thus far. More accurately, assume 
inductively that for 7 <fl ,  P~ has been defined; furthermore, J~-~U~<6 p~ is 
Al(L~Lf, F]) uniformly in J. Let 

5 = U  p;, 
~,<p 

Let 

Bp-- -Pp~f~F.  

#,B ffi { p C_ 7 <fl I V J, p N J~Ls[Bp] and J ~Zk(Ba)-Adm (-NP) 
iffJ EXk(Bp, p)-Adm(-NP)}. 

The rest of the constructionofpp carries through just as before, with everything 
relativized. This avoids the clash of the p~'s at a. 

Let 
Pffi U p'. 

aEr-nAdm 

Let B -- P (~ f (~ F. 
Finally, B can be coded into a real, by almost disjoint forcing (Jensen [J] or 

Jensen-Solovay [JS]). If R is the real so produced, and a is closed under 
addition and L, ~ V ffi HC, then B A a is A~(L,[R]). Also, admissibility and 
non-projectibility are not disturbed by R,  by its genericity. These properties 
suffice for the present purpose. [] Theorem 1 

§3 

THEOREM 4. Let A be a countable sequence of countable Y.n(A)-admiss- 
ibles. Let m < n. There is an R C_ to such that V a < sup A 

(1) otEEn(R)-Adm iffotEA. 
(2) I f  aEY,~(A)-Adm/A then otEY, m(R )-Adrrd~,m(R )-NP. 
(3) I f k  < n and aEEk(A)-Adm/Y.n(A)-Adm then ~ k ( R ) - A d m .  

PROOF. Most of the machinery of the previous proof carries over, primar- 
ily the construction of f and F. All that remains is to define appropriate pa's. 

Even here our previous work is useful. A good technique for reducing a to 
the appropriate strength is to shoot a club C Of~m-inadmissibles through it. If 
a were ~m(C)-np, let fl be Y.m(C)(ct)-stable. C is unbounded in/~, soft ~ C. But 
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pEI~m-Adm by stability. Therefore, for such a club C, a is not 
~,, ( C)-non-proj ectible. 

The forcing to do this is like the forcing to get a club of l~,-inadmissibles. 
Conditions are closed bounded sequences p of Zm-inadmissibles such that 
(1) ~'p, p n /~EL b, (2) i fp  is Y.k-non-projectible or -admissible then p ~ p is 
bounded in p or generic for this same forcing over Lp (k < n), and (3) i fp  is 
Z~-admissible then p n ,8 is bounded in/~. _-< is end-extension. 

~:~-admissibility is preserved by the same argument as before. Any stronger 
admissibility and non-projectibility of any/~ < a is preserved, because the 
generic is bounded in p, hence is in Lp. 

As before, define the po's inductively on a E ~ (A)-Adm, letting pa be empty 
if a EA, the least generic over L°[Up <, pp ~ f ~  F] otherwise. 

The alert reader will notice that the definitions of the pa's are fundamentally 
different in the two proofs. The second proof can be adapted to fit the needs of 
the first, the appropriate goal being a club of I~,-projectibles. Is there an 
adaptation of the first method to fit the second proof?. There are some 
problems in so doing while retaining the full strength of the theorem. 

The p,'s of the first theorem are obtained from a predicate g, which 
completely destroys any admissibility, by coding g, y.m U H,,-genericaUy, 
necessitating a Am +~ formula to recover it. In adapting this approach to case 
(2), it seems unlikely that there is a coding (partial Y.~, U Fire genericity?) which 
would preserve I~m-admissibility but not Y-m-nOn-projectibility. In what fol- 
lows we first find a g, which makes a a Y~-projectible I~-admissible, and code it 
Am definably. Note how delicate the proof is. Then we state the theorem that 
this technique yields when plugged into the machinery of Theorem 1. Finally 
we discuss the limitations of this approach. 

Let ot be Y.~-admissible, n > m. Assume local countability as in Theorem 1. 
Let 

-- {f[ d o m f _  oJ is finite 

f = fa~  U f,~, fr~.a ~ f,~ ~ JZ 
f ~  is 1-1 into a 
f~r is into a U { oo } (where oo is some arbitrary 

symbol of finite V-rank)}. 
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g _-< f iff dom g _D dora f 

g~d ~ f~d  
if n E dora f ~  then g(n ) _-> f(n)  (where ~ > a). 

A condition is a partial bijection between 09 and a, with commitments thatf(n) 
be at least a certain size, or undefined iff(n)  --~ ~ .  If Ga is ~-generic, let ga be 
the induced injection from a into oJ. Notice that we lose information going 
from G~ to g~. "nSrngg~"  is At(L,o[G~]) (viz. (n, oo)EG~), but only 
1-Ii(L~ [ga]). 

LEMMA 5. L~[g,] is admissible. 

PROOf. This is a retagging argument, in the style of Steel [St]. The idea is 
that p [l- ca depends only on p t rk  ca, so II- is definable. Henceforth ca is in the 
language for describing L~ [g~], not L, [Gal. 

F o r f ~  ~ ,  p < a, we define f t  p. dom( f r  p) = dom f; and iff(n)  > p then 
f t  pv,~(n)=p, otherwise f t  p ~ ( n ) =  f~,~(n), f t  pv~(n)= f~r(n). So f t p  
weakens any information above fl to ]L Letf.. .pg i f f r  p = g r ~8. 

~.p satisfies the extension property: If p0 "--p Pl and P6 < P0 then 3 p~ < p,, 
P6 " p  P~. From this we get the retagging property: If rk ca < ]/and P0 ~'p Pt, then 
P0 II- ca iff p~ [l- ca. Retagging is proved by a straightforward induction, using the 
extension property in the case of  negation. Finally, forcing is definable; more 
exactly, "p iF- ca" is Al(Lp), where fl > rk p, rk ca, uniformly in]/. Again, this is a 
straightforward induction, except for negation which introduces an un- 
bounded quantifier. In the inductive definition of II- instead of defining 
"P iF n ca" as "Vq _-< iv q I~ ca", let i tbe  "q rrkca [[/ca". 

Using the definability of ll- we now show that admissibility is preserved. 
Suppose Po iF- v n 6 09 3 x. ca(n, x. ), flo > rk po, rk Ca. To define fli + ~, given q, 
let (q., x. q ) be the least such that q. _-< q, and q. IF- ca(n, x~). Let 

fl,+, -- sup{rk(q,, xg) + 1 I q ~  ~ tq Lp,, n ~09}. 

Let fl = I.Jieo, fl~. This construction is A~(L~), by the definability of IF-, so fl < a. 
Let i : ~ ~ ~, be the identity except that all occurrences of oo are replaced 

by ft. Identify ~ with its image. Passing to Boolean completions, ~ is a 
complete sub-algebra of ~., so Gp •def G. N ~ is ~-generic (where G~ is 
~-generic). 

poll-,} VnE09 3x.  ca(n,x,,), by construction, so if p0EG. then/.¢[gp] 
Vn~. ta3x .  ca(n, xn). But (Lptgpl, gp>=(Lptg.l,g.>, so L . t g . l ,  V n e  
to 3 Px. ca(n, x.). [] Lemma 5 
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Now we code g~ into a Pa --- a Z . _  ~ U Hm- ~- Cohen generically, As definably, 
as in the proof of Theorem 1. Let 

~ = { p C_C. 7 < a I V S p N J EL~[g~] and J EZ,cAdm(NP) 
iff$ EZk(p)-Adm(NP) for k _-< m (k < m)}. 

< is end-extension. ~ preserves admissibility, just like ~ from Theorem 1. 
Let {a, I z < a} = ~ be the club of ~ ,  _ ~(a)-stables. Start with Po-- ~ .  Set 

p '  = p, U {a, + ga(0}; P, .  ~--L [g~]-least ~,+,-generic through p 'over  La,÷,[g~]; 
p~ -- U~<~ p,. We must show that each p, is a condition, ~ r at is A,~(LJ, and 
generics over fl show up shortly beyond fl by local countability so the 
definability conditions of .~, are easily met. We must show that ~ ,  preserves 
admissibility and non-projectibility up to ~,-admissiblity. 

We need to speak about Ik - in L[g~]. Facts like "p [~-r ~" are certainly 
forced by g E Ga; the next lemma shows that go suffices for finding such g's. 

LEMMA 6. Suppose p, ~ are names for a condition and a formula for 
.~Lforcing (fl < a). Then V g ~  

g [}- "P I~" ~" i f fg r rk p I~" "P I~" ~ ' .  

(Recall the convention on m~-1, from the ~ of Theorem 1: for ~ ranked, p [[- ¢ 
iffsup p > rk ~ and Lip]  ~ ~.) 

PROOF. g < g r rk p, so ~ is trivial. 
Suppose g [[- "p [[- ~ ' .  If  ~ is bounded and p m~- ~, then rk p > rk ~, so 

rk "p [~- ~" = rk p. By the retagging lemma, g r rk(p) I~- "P [~- ~ ' .  
If ~ = 3xq~'(x), let z be such that g I}-"p II-¢'(z)'. Inductively, 

g r rk p I[- "P ink- ¢'(z)". 
If  ~ = V x ¢'(x), let f < g r rk p. Let f '  _-< f ,  g' _-< g be such that 

dom f '  = dora g ' , f '  r rk p = g '  r rk p, 
n E d o m  f ' /dom f=*f '~(n)  = rk p, 
n E d o m  g' /dom g=~g~(n)  -- rk p, and 

each of dora f ' ,  dora g '  is sufficiently larger than dora f ,  dora g. 

Let 0: co ~ to be a permutation such that 
(1) 0 -- Id o f f o f d o m g ' ,  

(2) g ~ ( n )  ; f~,~(m)=.O(n) 7, m, 
(3) gg,~(n) < f ~ r ( m ) = *  O(n) ÷ m, 
(4) f~,,d(m)< g'~r(n)~O(n) ÷ m. 
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0 induces an automorphism of ~ :  O(p)(n)ffi p(O-'(n)). By construction, f '  
and O(g) are compatible; let f "  < f ' ,  0(g'). 

f "  IF o(=p IF w') - 0(w)'. 
f "  I[- O(p) -- p because if 0(n) ÷ n thenf"  II- g~(n) >- rk p. 

Also, f "  [l" 0(~) ffi ~0 since ~ is a formula in the language for ~[pp].  Finally, 
0(9?) = .~ because 9? uses G ~ in its definition only insofar as it con- 
siders members of L~[gp], which are unchanged by the finite permutation 0. 
So f "  I~ "P IF" ~". Therefore g trk p 1~ -~-~"p IF ~'". Since ~ begins with 
V, g trk p I~- "P I[" ¢~'. [] Lemma 6 

LEMMA 7. For# = a, + l (so# EZ,,_rAdm/Z=_t-NP),/~ EZ,,_l(pp)-Adm. 

PROOF. Let MC be the 2;,_2 master code for Lp. Lp[MC] is admissible. By 
Lemma 5, Lp[MC, gp] is admissible. By the genericity ofpp, Lp[MC, gp, pp] is 
admissible. 

Let p, q range over gp-names for 9) conditions and 2;~_2 U lI,,_2(Lp[pp]) 
formulae, p~,, ~ ,  are their realizations in Lp[ga]. Let 

MC~ = {(g, p ,~)  [ g = g r  rk p ^ g  [b"P 1~- ~"}. 

MC~, is Am_l(Lp), hence a,(Lp[MC]). In Lp[MC, gp], let 

MC~, -- { ( p, ~) [ 3 g compatible with gp, (g, p, ~) E MC~ }. 

MC• is A~(Lp[MC, gp]), so Lp[MCx,, pp] is admissible. 

By Lemma 6, MCm, determines I[-~f r 2;,_ 2 U 11,_ 2. Let 

MC,, = I 3 p p,<p. 

M C~, is A~(Lp[MC~,, g~]), so Lp[MCp~, p~] is admissible. Furthermore, MC~, is 
the Y.,_2(L~[ p~])-master code. Therefore, L~[ p~] is 1;,_ radmissible. 

[] Lemma 7 

].,EMMA 8. For fl = aa, 2 a limit (so/~EI;,,_,-NP),/1EX,,_t(pp)-NP. 

PROOF. Extend the rank function to all formulae, by setting rk( 3x 9) ffi 
rk ~. Let ~ be 2;,_,(Lp[pp]), ~, > rk ~ a successor 2;=_,(/~)-stable. Let MC~,, 
MC=,, MCe, be as in Lemma 7, only also allowing 2;,_, U II ,_ ,  formulae. By 
Lemma 7, there are g E G~, p E p~, (g, p, ~) E MC~e or (g, p, -1 ~) E MC~,. 
g -- g trk p < ~,, so g E Gp, p ~ pp. By stability, (g, p, ("1)~) E MC~,. So Y-m--, 
truth in Lp[pp] reflects. G Lemma 8 
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LEMMA 9. If fl -- a~ EZm-Adm then fl ~Zm( p#)-Adm. 

PROOV. Let MC~,, 3' < ]~, be as in Lemma 8. We have already seen that for 
~0 EZm_ ~ U Fire_ ~, g~ and p~ determine ~ in both L~[ p~] and Lp[ pp], for 3' the 
least Era- l(P)-stable > rk ~. So {~ i 3 7 > rk ~, 7 Zm - ~(p)-stable,  3 g compat- 
ible withgpandpwithpp(g, p, ~o) E MC~,} -- MCp, is the Y~,_ m(Lp[ pp])-master 
code. The sequence of stables, as well as the MC~,'s, are Am(Lp), hence 
A~(Lp[MCI), where MC is the Zm_ ~(Lp)-master code. Lp[MCI is admissible, so 
Lp[MC, gp, pp] is also, as well as Lp[MCp~, pp]. So L~[p~] is Am-admissible. 

r3 Lemma 9 

Since ~ is Am(L,) and length ~ - - a ,  g~ is A,,(La[p,]), so L,[p,] is 
]Em-projectible. Using these p,'s, we get the following: 

THEOREM 10. Let A be a countable sequence of  countable Y.n(A)- 
admissibles. Let m < n. There is an R C_ co such that V a <- sup A 

(1) aEZ,(R)-Adm i f f a~A .  
(2) I f  a E Y., (A )- Adm/A then a ~ Y~ m(R )- Adm/Zm(R )- NP. 
(3) I f k  < m and aEY.k(A)-Adm then aEY-k(R)-Adm. 

(3) holds because all properties strictly weaker then Y-,.-non-projectibility 
were preserved everwbere at all times. (2) holds by the construction of Pa. 
(1) holds primarily because for each of the finitely many p > a such that 
Dp N a ÷ 0 ,  Dp ~ a is bounded in a. So when a recovers gp(as much as it can) 
in a A,. way, all it guts is gp N (3' X oJ), some 3' < a, which is set-generic over La. 
Set genericity does not impair any closure. The failure of this theorem is that 
we have no such guarantee for a E ~k(A)-Adm/Y.n(A)-Adm, where m < k < n. 
There could be a p > a such that L. < ~._, L B and order-type (Dp N a)  ffi a .  In 
this case, gp N (or × w) is Am(L~[ pp N a]), and is an injection of a into co. 

The point of this is to sharpen our understanding of these closure properties. 
Given local countability they fall into a neat linear order based on Com- 
prehension: 

A, Comp < Z~ Comp < A2 Comp < Y-2 Comp < • • .. 

From this picture, one might conjecture homogeneity, in that the passage from 
one point in this sequence to the next should be just like the passage from any 
other point to its successor. Our work suggests that this is false, and that 
Y,.- admissibles and -non-projectibles are more closely tied than are 
Zm" non-projectibles and Z,. + ~-admissibles. Can this be made precise? Is there 
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a forcing partial order over which a certain partial genericity preserves 
Zm-admissiblity but not Y.m-non-projectibility? 

Along a different line, one can ask about starting with a sequence A C_ 
Xn(A)-NP.* This paper's construction relied on local countability, for the 
existence of  generics. Levy forcing does not always preserve non-projectibility: 
i f  L~ g V = L~, and L~ [g] V V = HC, then L~ [g] ][/2;2 NP. So if  such an a is 
the first member of  A, then A cannot be realized as the Z2- NP spectrum of  a 
real. If  we restrict our attention to those sequences which seem not to demand 
local countability, then S. Friedman has shown [F], [F2] that even for the first 
case, getting a to be the least R-admissible > ]al for some R _ l a I, not all 
admissibles have such an R. So for a construction without cardinal collapses, 
or for retaining a sequence of  Xn-non-projectibles, what are good analogues o f  
the present theorems? 
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