PLAYING WITH ADMISSIBILITY SPECTRA[†]

BY

ROBERT S. LUBARSKY Department of Mathematics, Cornell University, Ithaca, New York, USA

ABSTRACT

Jensen showed that any countable sequence A of A-admissibles is the initial part of the admissibility spectrum of a real R. His construction generalizes straightforwardly to Σ_n -admissibles. This adaptation makes admissibles not in A R-inadmissible. We strengthen Jensen's theorem by requiring that $\Sigma_n(A)$ -admissibles not in A be $\Sigma_m(R)$ -admissible or $\Sigma_m(R)$ -non-projectible, for m < n.

§1. Introduction and preliminaries

An ordinal α is admissible if $L_{\alpha} \models \Sigma_1$ Replacement and A-admissible $(A \subset ORD)$ if $L_{\alpha}[A] \models \Sigma_1(A)$ Replacement. Various results connect admissible ordinals with reals. If α is a countable admissible, then there is an $R \subset \omega$ such that α is the first R-admissible greater than ω ($\alpha = \omega_1^R$). (See Barwise [B], Sacks [Sa], and Steel [St] for three different proofs.) There have been different kinds of generalizations of this result. S. Friedman [F1, F2] considers uncountable admissibles. Jensen [J] realizes a countable sequence A of countable A-admissibles as the initial segment of R-admissibles for some real R. Sacks [Sa] finds a solution to $\alpha = \omega_1^R$ minimal in the hyperdegrees, and the author [L] investigates realizing a Jensen-type sequence with minimality at many ordinals. Most of these theorems generalize to Σ_n admissibles (ordinals α such that $L_{\alpha} \models \Sigma_n$ Replacement).

Another strengthening of Jensen's theorem concerns the ordinals not in A. Using the obvious adaptation of Jensen's proof for realizing a sequence A of $\Sigma_n(A)$ -admissibles, the $\Sigma_n(R)$ -admissibility of $\alpha \in ORD/A$ is destroyed by

[†] The contents of this paper formed part of the author's doctoral thesis. He would like to thank Professor Sy Friedman for his capable advising, and the NSF and MIT for their financial support. Received August 11, 1987

sending an ω -sequence through it. This renders it not only $\Sigma_n(R)$ -inadmissible but also $\Sigma_1(R)$ -inadmissible. Here we show how to clean up spectra while treating the undesirables with gentleness.

The motivation is to kill the Σ_n closure properties of $\alpha \notin A$ while preserving the Σ_m closure, for an arbitrary m < n. Phrased this way, the problem becomes more involved, since the intuition of Σ_m closure can be expressed in different ways. Here we consider Σ_m -admissibility and Σ_m -non-projectibility. Our construction breaks into two cases, depending on whether we want to preserve both Σ_m -admissibility and non-projectibility, or just Σ_m -admissibility while destroying Σ_m -non-projectibility.

We conclude with a proof indicating an asymmetry between the two cases, and some questions.

For more detail and proofs regarding the basic material summarized below, see [D] and [MS].

Definitions

 $\langle X, \varepsilon \rangle$ is Σ_n -admissible if $\langle X, \varepsilon \rangle \models ZF$ -Power-Replacement $+ \Delta_n$ Comprehension $+ \Delta_n$ Bounding + Foundation for definable classes

 $\alpha \in \text{ORD}$ is Σ_n -admissible if $\langle L_{\alpha}, \varepsilon \rangle$ is Σ_n -admissible (equivalently, $L_{\alpha} \models \Sigma_n$ Replacement)

 $\alpha \in \text{ORD}$ is Σ_n -non-projectible if $L_{\alpha} \models$ "There is no Σ_n -definable 1-1 function from V into a set"

 $\Sigma_n \operatorname{Adm} = \{ \alpha \mid \alpha \text{ is } \Sigma_n \operatorname{-admissible} \}$

 Σ_{n} NP = { $\alpha \mid \alpha \text{ is } \Sigma_{n}$ non-projectible}

 $\hat{\alpha}$ = least primitive recursive closed $\beta > \alpha$

 β is $\Sigma_n(\alpha)$ -stable if $L_\beta < \Sigma_n L_\alpha$

The \sum_{n} -projectum of α (ρ_n^{α}) is the least β such that

$$\exists f \in \Sigma_n(L_\alpha) \quad f: \alpha \xrightarrow{1-1} \beta$$

 $A \subset \rho_n^{\alpha}$ is a $\Sigma_n(L_{\alpha})$ Master Code if

$$\forall B \subset \rho_n^{\alpha} \quad B \in \Delta_{n+1}(L_{\alpha}) \quad \text{iff} \quad B \in \Delta_1(L_{\rho_n^{\alpha}}[A]).$$

If \mathscr{P} is partial order definable over L_{α} , $G \subseteq \mathscr{P}$ is \mathscr{P} -generic (over L_{α}) if G intersects every dense subset of \mathscr{P} definable over L_{α} .

PROPOSITION (folklore). (1) If $\alpha \in \Sigma_n$ -Adm then $\alpha \in \Sigma_m$ -Adm and $\alpha \in \Sigma_m$ -NP, $\forall m < n$.

(2) If $\alpha \in \Sigma_n$ -Adm and β is $\Sigma_n(\alpha)$ -stable, then $\beta \in \Sigma_n$ -Adm.

(3) If $\alpha \in \Sigma_n$ -Adm then α is the limit of α -many $\Sigma_{n-1}(\alpha)$ -stables.

PROPOSITION (folklore). Suppose $L_{\alpha} \models$ "There is a largest cardinal". Then

- (1) $\alpha \in \Sigma_n$ -NP iff α is a limit of $\Sigma_n(\alpha)$ -stables.
- (2) $\alpha \in \Sigma_n$ -Adm iff $L_{\alpha} \models \Delta_n$ Comprehension. $\alpha \in \Sigma_n$ -NP iff $L_{\alpha} \models \Sigma_n$ Comprehension.

The primary step in proving these is taking the canonical Σ_n Skolem hull of some $\beta < \alpha$ in L_{α} . The Skolem function is Σ_n , so if α is Σ_n non-projectible then the hull is not all of L_{α} . Furthermore, if $\beta >$ largest α -cardinal, then the hull is L_{γ} for some γ . The advantage of assuming a largest cardinal is that the closure properties of admissibility and non-projectibility form a linear hierarchy $(\Sigma_n \text{Adm} < \Sigma_n \text{NP} < \Sigma_{n+1} \text{Adm})$, with each ordinal of a class being a limit of ordinals from the next lower class. This is not true in general, as \aleph_{ω} is fully non-projectible yet Σ_2 inadmissible. How can we ensure that there always is a largest cardinal?

PROPOSITION (folklore). (1) Let $I \subset \alpha$ be $\Delta_1(L_\alpha)$. Let \mathcal{P} be the product (with finite support) of the (finite) Levy collapse of each $i \in I$ to $\omega: p \in \mathcal{P}$ iff dom $(p) \subseteq I$ is finite and $p(i): n \to i$ is 1-1, for some $n \in \omega$. Then \mathcal{P} preserves Σ_n admissibility: if $\alpha \in \Sigma_n$ -Adm and G is \mathcal{P} -generic, then α is $\Sigma_n(G)$ -Admissible.

(2) Let $I \subseteq \text{ORD}$ be Δ_1 uniformly over admissible ordinals. Let \mathscr{P} be as above, and \mathscr{P}_{α} be $(\mathscr{P})^{L_{\alpha}}$. Let $\beta < \alpha$ and G_{α} be \mathscr{P}_{α} -generic. Then $G_{\beta} = G_{\alpha} \cap (\beta \times \omega \times \beta)$ is \mathscr{P}_{β} -generic.

To see part (1), note that \parallel is definable: if $\operatorname{rk} \varphi < \gamma$, φ a bounded formula, then $p \parallel \varphi$ iff $p \cap (\gamma \times \omega \times \gamma) \parallel \varphi$ (shown inductively on formulae), so $\parallel \vdash \mathscr{P} \times \Delta_0$ is Δ_1 . If $p \parallel \varphi$ is a total Σ_n function, then bound $\operatorname{rng} \varphi$ by the following ω -step process. At stage n + 1, for each $q \in \mathscr{P}_{\alpha_n}$, $x \in \operatorname{dom} \varphi$, let $q' \leq q$ force a value x(q') for $\varphi(x)$. Let α_{n+1} bound the *L*-ranks of the *q*'s and x(q')'s. This construction is bounded by Σ_n admissibility. After ω many steps we have a pre-dense set forcing rng φ into a set.

The second part is true because the components are independent of one another: if $D \subseteq \mathscr{P}_{\beta}$ is dense, then $\{p \in \mathscr{P}_{\alpha} | (p \restriction \beta \times \omega \times \beta) \in D\}$ is dense in \mathscr{P}_{α} .

All of the preceding definitions, propositions, and proofs relativize to $A \subseteq ORD$.

§2

THEOREM 1. Let A be a countable sequence of countable $\Sigma_n(A)$ -admissibles. Let m < n. There is an $R \subseteq \omega$ such that $\forall \alpha \leq \sup A$

(1) $\alpha \in \Sigma_n(R)$ -Adm iff $\alpha \in A$.

(2) If $\alpha \in \Sigma_n(A)$ -Adm/A then $\alpha \in \Sigma_m(R)$ -NP/ $\Sigma_{m+1}(R)$ -Adm.

(3) If k < n and $\alpha \in \Sigma_k(A)$ -Adm/ $\Sigma_n(A)$ -Adm then $\alpha \in \Sigma_k(R)$ -Adm.

PROOF. Without loss of generality we can assume that $\forall \alpha \ (\leq \sup A)$ $L_{\dot{\alpha}} \models \alpha$ is countable. If this were not the case, let $I = \{\alpha \mid L_{\dot{\alpha}} \models \alpha$ is uncountable}, and \mathscr{P} be the Levy collapse of each $\iota \in I \cap \sup A + 1$. With $G \mathscr{P}$ -generic, work in L[G] just as we will be working in L. Similarly, we assume $L_{\alpha}[A] = L_{\alpha}$ and $\Sigma_k(A)$ -Adm = Σ_k -Adm, since the proof relativizes to L[A].

To each Σ_n admissible α we will associate $D_{\alpha} \subseteq \alpha$ of ordertype α just as in Jensen's proof, to provide enough scratchwork for each ordinal we're concerned with. The predicate coding $\langle D_{\alpha} | \alpha < \sup A \rangle$ will not affect Σ_n -admissibility or any weaker property. First we describe how to get suitable clubs of Σ_n -inadmissibles. We use these to build the D_{α} 's. The information making $\alpha \Sigma_{m+1}$ -inadmissible is then coded onto D_{α} . Finally, the predicate can be coded by a real.

Clubs of Σ_n -inadmissibles

LEMMA 2. $\forall \alpha \leq \sup A \exists C_{\alpha} \subseteq \alpha \text{ such that}$

- (1) C_{α} is a club of Σ_n -inadmissibles,
- (2) $\forall \beta \leq \alpha, C_{\alpha} \cap \beta \in L_{\beta}$,

(3) if $\beta < \alpha, \beta \in \Sigma_n$. Adm then $C_{\alpha} \cap \beta \in L_{\beta}$,

(4) if $\beta \leq \alpha$, $\beta \in \Sigma_m$ -Adm(-NP) (m < n) then

 $\beta \in \Sigma_m(C_\alpha)$ -Adm(-NP).

PROOF. C_{α} is any generic for the appropriate forcing \mathscr{P}_{α} over L_{α} . Note that by our assumption of countability, such generics exist in $L_{\dot{\alpha}}$.

Inductively on α , let \mathscr{P}_{α} be $\{p \mid p \text{ is a closed set of } \Sigma_n\text{-inadmissibles bounded}$ in α such that (2) and (3) from above hold, and if $\beta \leq \sup p$ is $\Sigma_m\text{-admissible or}$ -non-projectible then $p \cap \beta$ is bounded in β or \mathscr{P}_{β} -generic over $L_{\beta}\}$. \leq is end-extension.

Clearly, any \mathscr{P}_{α} -generic in $L_{\dot{\alpha}}$ will satisfy (1)-(3). To show (4), we must show that \mathscr{P}_{α} preserves Σ_m -admissibility and -non-projectibility.

If φ is Δ_0 , let $p \Vdash \varphi$ iff sup $p > \operatorname{rk} \varphi$ and $L[p] \models \varphi$. Extend \Vdash to Σ_n formulae as usual: $p \Vdash \exists x \varphi(x)$ if $\exists x p \Vdash \varphi(x)$; for φ unranked, $p \Vdash \neg \varphi$ if $\forall q \leq p$

ADMISSIBILITY SPECTRA

 $q \not\models \varphi$. \Vdash is dense in the standard notion of forcing $\mid \mid_{st}$: if $p \mid \mid_{st} \varphi$ then $\exists q \leq p$ $q \mid \mid \varphi$. So $\mid \mid$ suffices for our forcing relation, and is definable: $\mid \mid \uparrow \mathscr{P} \times \Sigma_n(\Pi_n)$ is $\Sigma_n(\Pi_n)$.

Suppose α is Σ_1 -admissible, and $p_{-1} \Vdash \forall n \in \omega \exists x_n \varphi(n, x_n)$. Let p_i be the least $p \leq p_{i-1}$ such that that $p \Vdash \varphi(i, t_i)$, for some term t_i of rank $< \sup p_i$. Let $q = \bigcup p_i$. sup q is inadmissible, as $\langle p_i \mid i \in \omega \rangle$ is $\Delta_1(L_{\sup q})$. Therefore $q' = q \cup \{\sup q\} \leq p$ and $q' \Vdash \forall n \in \omega \exists^{\sup q} x_n \varphi(n, x_n)$.

Suppose $\alpha \in \Sigma_m$ -NP. Let φ be Σ_m , $p \in \mathscr{P}_{\alpha}$. We must show Σ_m comprehension holds for $L_{\alpha}[G_{\alpha}]$; it suffices to find a $q \leq p$ such that $\forall n q \parallel \varphi(n)$. Let β be the least $\Sigma_m(\alpha)$ -stable greater than rk φ . Let $q' \leq p$ be \mathscr{P}_{β} -generic over L_{β} , $q' \in L_{\beta}$. Let $q = q' \cup \{\beta\}$. q will decide each $\varphi(n)$: $\forall n \exists \gamma q \cap \gamma \parallel_{L_{\theta}} \varphi(n)$. Moreover,

$$q \cap \gamma \Vdash_{L_{t}} \varphi(n) (\neg \varphi(n)) \quad \text{iff} \quad q \cap \gamma \Vdash_{L_{t}} \varphi(n) (\neg \varphi(n)),$$

by stability. Since β was the least stable beyond a given ordinal, it's not even Σ_m -non-projectible, much less Σ_n -admissible, so (3) is satisfied.

Suppose $\alpha \in \Sigma_m$ -Adm, m > 1, φ is \prod_{m-1} , and $p \models \forall n \in \omega \exists x_n \varphi(n, x_n)$. Let $\alpha_0 = \max(\operatorname{rk} p, \operatorname{rk}(\operatorname{parameters}(\varphi)))$. $\forall q \in \mathscr{P}_{\alpha} \cap L_{\alpha_0}$, $n \in \omega$ let $q_n \leq q, x_n$ be the least such that $q_n \models \varphi(n, x_n^{q_n})$. This operation has bounded range, say by β_0 , by Σ_m -admissibility. Let α_1 be the least $\Sigma_{m-1}(\alpha)$ -stable greater than β_0 . Continue as before, extending each $q \in \mathscr{P}_{\alpha} \cap L_{\alpha_1}$ to $q_n \models \varphi(n, x_n^{q_n})$. Let $\alpha_{\omega} = \bigcup \alpha_n$. As a limit of $\Sigma_{m-1}(\alpha)$ -stables, α_{ω} is also $\Sigma_{m-1}(\alpha)$ -stable. Also, for each n

$$D_n = \{q \mid q \Vdash \exists x_n \varphi(n, x_n)\}$$

is dense (in $L_{\alpha_{\omega}}$), by construction. Let $q' \leq p$, $q' \in L_{\dot{\alpha}_{\omega}}$ be $\mathscr{P}_{\alpha_{\omega}}$ -generic. $q = q' \cup \{\alpha_{\omega}\}$ is a condition, because α_{ω} is Σ_{m} -inadmissible (since this construction is $\Delta_m(L_{\alpha_{\omega}})$). Finally,

$$q \Vdash \forall n \in \omega \exists^{\alpha} x_n \varphi(n, x_n). \qquad \Box \text{ Lemma } 2$$

The D_{α} 's

Using the C_{α} 's, we can inductively build predicates which assign α -many ordinals to each Σ_n -admissible α .

Let $\gamma_v = \sup\{\rho \leq v \mid \rho \in \Sigma_n \text{-} Adm\}$, and

$$\theta_{\nu} = \{ f \in L_{\nu} \mid \text{dom } f = \gamma_{\nu} \\ \text{rng } f = (\gamma_{\nu} + 1) \cap \Sigma_{n} \text{-Adm} \\ \forall \alpha f(\alpha) > \alpha \\ \forall \alpha \{ \beta \beta > \alpha \land f^{-1}(\beta) \cap \alpha \neq \emptyset \} \text{ is finite} \\ \text{letting } F \text{ be } \{ \langle \delta, \delta' \rangle \mid f(\delta) = f(\delta') \} \end{cases}$$

if
$$\alpha \in \Sigma_m$$
-Adm $(m \le n)$, $L_{\alpha}[f, F]$ is Σ_m -admissible
if $\alpha \in \Sigma_m$ -NP $(m < n)$, $L_{\alpha}[f, F]$ is Σ_m -np
if $\alpha \in \Sigma_n$ -Adm then $f^{-1}(\alpha)$ is unbounded in α
if $\alpha \in \Sigma_n$ -Adm and $\beta > \alpha$ then $f^{-1}(\beta) \cap \alpha$ is bounded in α }.

In words, θ_v consists of those functions (definable near v) which, to each Σ_n -admissible $\alpha \leq v$, assign α -many smaller ordinals (D_{α}) , keep the D_{α} 's rather separate (last clause), and do not affect admissibility or non-projectibility (up to Σ_n -admissibility).

LEMMA 3. If v' > v and $f \in \theta_v$ then $\exists f' \in \theta_{v'} f' \supset f$.

PROOF. By induction on v', starting with v.

If $\gamma_{\nu'} < \nu'$, extend f to $f_{\gamma_{\nu}} \in \theta_{\gamma_{\nu'}}$, and let $f' = f_{\gamma_{\nu'}}$.

If $\gamma_{\nu'} = \nu'$ and $\gamma_{\nu'}$ is a successor Σ_n -admissible (after *i* say), let $f_i \supseteq f, f_i \in \theta_i$, and let

$$f' = f_i \cup \{ \langle \alpha, \nu' \rangle \mid \iota \leq \alpha < \nu' \}.$$

If $\gamma_{v'} = v'$ is a limit of Σ_n -Adm and is itself Σ_n -inadmissible, let $C_{v'} = \langle v_j | j \leq v' \rangle$ be a club of Σ_n -admissibles from the previous lemma. Let $f_{v_{j+1}} \supseteq f_{v_j}$, $f_{v_{j+1}} \in \theta_{v_{j+1}}$ be the least such, and if λ is a limit let $f_{v_{\lambda}} = \bigcup f_{v_j}$. $f_{v_{\lambda}} \in \theta_{v_{\lambda}}$ because of the nice properties of $C_{v'}$. Let $f' = \bigcup f_{v_j}$.

If v' is a limit of Σ_n -Adm in Σ_n -Adm then we must also ensure that v' itself gets v'-many ordinals. Let $f' = \bigcup f_{v_i}$ as in the previous case. Let

$$f''(\alpha) = \begin{cases} f'(\alpha) & \alpha \notin C_{\nu'}, \\ \nu' & \alpha \in C_{\nu'}. \end{cases}$$

We use property (3) in the definition of C_{α} to know that $f''^{-1}(\alpha)$ is unbounded in α , for $\alpha \in \Sigma_n$ -Adm.

Fix $f \in \theta_{\sup A}$. Let D_{α} be $f^{-1}(\alpha)$. Let

$$F = \{ \langle \delta, \delta' \rangle \mid f(\delta) = f(\delta') \}.$$

Fixing an α

Now we concentrate on how to reduce a given Σ_n -admissible α to a Σ_m -np, Σ_{m+1} -inadmissible. Afterwards we can paste these predicates for different α 's together using the D_{α} 's.

Let $g_{\alpha} \subseteq \alpha$ be the least ω -sequence cofinal in α . We will code g_{α} into a

 Σ_m -generic, Δ_{m+1} -definably. Genericity preserves Σ_m -np; definability uncodes g_{α} in time to make $\alpha \Sigma_{m+1}$ -inadmissible.

The forcing involved is Cohen forcing. Let

$$\mathcal{P}^{\alpha} = \{ p \subseteq \gamma < \alpha \mid \forall \delta, p \cap \delta \in L_{\delta} \text{ and } \delta \in \Sigma_{k} \text{-Adm}(\text{NP}) \\ \text{iff } \delta \in \Sigma_{k}(p) \text{-Adm}(\text{NP}) (k < n) \}.$$

 \parallel is defined as for \mathcal{P}_{α} from Lemma 2.

 \mathscr{P}^{α} preserves Σ_{k} -admissibility and -non-projectibility $\forall k$. The proof of this fact is exactly as the proof of the same for \mathscr{P}_{α} .

Let $\{\alpha_i^m \mid i < \alpha\}$ be the club of $\Sigma_m(\alpha)$ -stables. Let p_0 be the least $\mathscr{P}^{\alpha_0^m}$ -generic over $L_{\alpha_0^m}$. $p_0 \in \mathscr{P}^{\alpha}$. Let $p'_0 = p_0$ if $0 \notin g_{\alpha}$, $p_0 \cup \{\alpha_0^m\}$ if $0 \in g_{\alpha}$. More generally, let p_{i+1} be the least $\mathscr{P}^{\alpha_i^m}$ -generic through p'_i omitting α_i^m if $i \notin g_{\alpha}$. Let $p_{\lambda} = \bigcup p_i$. Let $p'_i = p_i$ if $i \notin g_{\alpha}$, $p_i \cup \{\alpha_i^m\}$ if $i \in g_{\alpha}$. Let $p_{\alpha} = \bigcup p_i$.

If $\alpha_i^m < \beta \leq \alpha_{i+1}^m$, then β 's admissibility or non-projectibility is preserved by p_{α} , by the definition of $\mathscr{P}^{\alpha_{i+1}^m}$. If $\beta = \alpha_{\lambda}^m$, λ a limit, β is $\Sigma_m(p_{\alpha})$ -np: let φ be Σ_m , rk $\varphi < \alpha_i^m < \alpha_{\lambda}^m$. p_i will decide each $\varphi(n)$ for $\mathscr{P}^{\alpha_i^m}$. By Σ_m -elementarity, the same decisions are valid for $\mathscr{P}^{\alpha_i^m}$, so in $L_{\alpha_i^n}[p_{\alpha}] \varphi$ can be evaluated in $L_{\alpha_i^m}[p_{\alpha}]$. If $\beta = \alpha_{\lambda}^m$ is Σ_k -admissible or np (m < k < n), it will be $\Sigma_k(p_{\alpha})$ -admissible or np : $p_{\alpha} \upharpoonright \beta$ is $\Delta_{m+1}(L_{\beta})$, because $\langle \alpha_i^m \mid i < \lambda \rangle$ is $\Delta_{m+1}(L_{\alpha_i^m})$ and $g_{\alpha} \upharpoonright \beta$ is finite.

 α itself is $\Sigma_m(p_\alpha)$ -np, for the same reason that the α_i^m 's remain $\Sigma_m(p_\alpha)$ -np. However, α is $\Sigma_{m+1}(p_\alpha)$ -inadmissible. $\langle \alpha_i^m | i < \alpha \rangle$ is $\Delta_{m+1}(L_\alpha)$, so α can read off g_α from p_α in a Δ_{m+1} way.

The Final Predicate

As a first approximation to the final predicate $B \subseteq \sup A$, spread each p_{α} along D_{α} to get p'_{α} . (If $\alpha \in A$, let $p'_{\alpha} = \emptyset$.) Let

$$P=\bigcup_{\alpha\in\Sigma_n\mathrm{Adm}}p'_{\alpha}.$$

Let $\overline{B} = P \oplus f \oplus F$.

Recall that the last two components of \bar{B} do not affect any ordinal's admissibility or non-projectibility. Also, $\alpha \mapsto \bigcup_{\gamma < \alpha} p'_{\gamma}$ is $\Delta_{l}(L_{\alpha}[f, F])$ uniformly in α , since the construction of the previous section is so simply defined. If $\alpha \in \Sigma_{n}$ -Adm, then D_{α} , recoverable from \bar{B} 's third component, is either empty (and $\alpha \in A$) or it brings α down to where it's supposed to be. We must show only that for the finitely many $\beta > \alpha$ such that $D_{\beta} \cap \alpha \neq \emptyset$, p'_{β} does not really affect α .

By \tilde{B} 's third component, $L_{\alpha}[\tilde{B}]$ can separate $\{\gamma < \alpha \mid f(\gamma) > \alpha\}$ into finitely

many blocks. Each block separately will preserve α 's closure, by the definition of the p_{β} 's. The only possible problem is in the combination of the (finitely many) p'_{β} 's.

This construction must be altered to account for this problem. Instead of defining p_{β} over L_{β} , with initial segments preserving the closure of L_{γ} ($\gamma < \beta$), do it relative to the amount of *B* constructed thus far. More accurately, assume inductively that for $\gamma < \beta$, p_{γ} has been defined; furthermore, $\delta \mapsto \bigcup_{\gamma < \delta} p_{\gamma}'$ is $\Delta_1(L_{\delta}[f, F])$ uniformly in δ . Let

$$P_{\beta} = \bigcup_{\gamma < \beta} p_{\gamma}', \qquad B_{\beta} = P_{\beta} \oplus f \oplus F.$$

Let

$$\mathcal{P}^{\beta} = \{ p \subseteq \gamma < \beta \mid \forall \delta, p \cap \delta \in L_{\delta}[B_{\beta}] \text{ and } \delta \in \Sigma_{k}(B_{\beta})\text{-Adm (-NP)} \\ \text{iff } \delta \in \Sigma_{k}(B_{\beta}, p)\text{-Adm(-NP)} \}.$$

The rest of the construction of p_{β} carries through just as before, with everything relativized. This avoids the clash of the p'_{β} 's at α .

Let

$$P=\bigcup_{\alpha\in\Sigma_n\operatorname{Adm}} p'_{\alpha}.$$

Let $B = P \oplus f \oplus F$.

Finally, *B* can be coded into a real, by almost disjoint forcing (Jensen [J] or Jensen-Solovay [JS]). If *R* is the real so produced, and α is closed under addition and $L_{\alpha} \models V = \text{HC}$, then $B \cap \alpha$ is $\Delta_1(L_{\alpha}[R])$. Also, admissibility and non-projectibility are not disturbed by *R*, by its genericity. These properties suffice for the present purpose.

§3

THEOREM 4. Let A be a countable sequence of countable $\Sigma_n(A)$ -admissibles. Let m < n. There is an $R \subseteq \omega$ such that $\forall \alpha \leq \sup A$

- (1) $\alpha \in \Sigma_n(R)$ -Adm iff $\alpha \in A$.
- (2) If $\alpha \in \Sigma_n(A)$ -Adm/A then $\alpha \in \Sigma_m(R)$ -Adm/ $\Sigma_m(R)$ -NP.
- (3) If k < n and $\alpha \in \Sigma_k(A)$ -Adm $\Sigma_n(A)$ -Adm then $\alpha \in \Sigma_k(R)$ -Adm.

PROOF. Most of the machinery of the previous proof carries over, primarily the construction of f and F. All that remains is to define appropriate p_a 's.

Even here our previous work is useful. A good technique for reducing α to the appropriate strength is to shoot a club C of Σ_m -inadmissibles through it. If α were $\Sigma_m(C)$ -np, let β be $\Sigma_m(C)(\alpha)$ -stable. C is unbounded in β , so $\beta \in C$. But

 $\Sigma_m(C)$ -non-projectible.

The forcing to do this is like the forcing to get a club of Σ_n -inadmissibles. Conditions are closed bounded sequences p of Σ_m -inadmissibles such that (1) $\forall \beta, p \cap \beta \in L_{\beta}$, (2) if β is Σ_k -non-projectible or -admissible then $p \cap \beta$ is bounded in β or generic for this same forcing over L_{β} (k < n), and (3) if β is Σ_m -admissible then $p \cap \beta$ is bounded in β . \leq is end-extension.

 Σ_m -admissibility is preserved by the same argument as before. Any stronger admissibility and non-projectibility of any $\beta < \alpha$ is preserved, because the generic is bounded in β , hence is in L_{β} .

As before, define the p_{α} 's inductively on $\alpha \in \Sigma_n(A)$ -Adm, letting p_{α} be empty if $\alpha \in A$, the least generic over $L_{\alpha}[\bigcup_{\beta < \alpha} p_{\beta} \oplus f \oplus F]$ otherwise.

§4

The alert reader will notice that the definitions of the p_{α} 's are fundamentally different in the two proofs. The second proof can be adapted to fit the needs of the first, the appropriate goal being a club of Σ_m -projectibles. Is there an adaptation of the first method to fit the second proof? There are some problems in so doing while retaining the full strength of the theorem.

The p_{α} 's of the first theorem are obtained from a predicate g_{α} which completely destroys any admissibility, by coding $g_{\alpha} \Sigma_m \cup \prod_m$ -generically, necessitating a Δ_{m+1} formula to recover it. In adapting this approach to case (2), it seems unlikely that there is a coding (partial $\Sigma_m \cup \prod_m$ genericity?) which would preserve Σ_m -admissibility but not Σ_m -non-projectibility. In what follows we first find a g_{α} which makes α a Σ_1 -projectible Σ_1 -admissible, and code it Δ_m definably. Note how delicate the proof is. Then we state the theorem that this technique yields when plugged into the machinery of Theorem 1. Finally we discuss the limitations of this approach.

Let α be Σ_n -admissible, n > m. Assume local countability as in Theorem 1. Let

$$\mathcal{P}_{\alpha} = \{ f \mid \text{dom } f \subseteq \omega \text{ is finite} \\ f = f_{\text{fixed}} \cup f_{\text{var}}, f_{\text{fixed}} \cap f_{\text{var}} = \emptyset \\ f_{\text{fixed}} \text{ is } 1-1 \text{ into } \alpha \\ f_{\text{var}} \text{ is into } \alpha \cup \{\infty\} \text{ (where } \infty \text{ is some arbitrary} \\ \text{ symbol of finite } V\text{-rank} \text{)} \}.$$

$$g \leq f \text{ iff } \operatorname{dom} g \supseteq \operatorname{dom} f$$

$$g_{\text{fixed}} \supseteq f_{\text{fixed}}$$

$$\operatorname{if} n \in \operatorname{dom} f_{\text{var}} \text{ then } g(n) \geq f(n) \text{ (where } \infty > \alpha).$$

A condition is a partial bijection between ω and α , with commitments that f(n) be at least a certain size, or undefined if $f(n) = \infty$. If G_{α} is \mathscr{P}_{α} -generic, let g_{α} be the induced injection from α into ω . Notice that we lose information going from G_{α} to g_{α} . " $n \notin \operatorname{rng} g_{\alpha}$ " is $\Delta_{1}(L_{\omega}[G_{\alpha}])$ (viz. $\langle n, \infty \rangle \in G_{\alpha}$), but only $\Pi_{1}(L_{\alpha}[g_{\alpha}])$.

LEMMA 5. $L_{\alpha}[g_{\alpha}]$ is admissible.

PROOF. This is a retagging argument, in the style of Steel [St]. The idea is that $p \Vdash \varphi$ depends only on $p \upharpoonright \operatorname{rk} \varphi$, so \Vdash is definable. Henceforth φ is in the language for describing $L_{\alpha}[g_{\alpha}]$, not $L_{\alpha}[G_{\alpha}]$.

For $f \in \mathscr{P}_{\alpha}$, $\beta < \alpha$, we define $f \upharpoonright \beta$. dom $(f \upharpoonright \beta) = \text{dom } f$; and if $f(n) \ge \beta$ then $f \upharpoonright \beta_{\text{var}}(n) = \beta$, otherwise $f \upharpoonright \beta_{\text{fixed}}(n) = f_{\text{fixed}}(n)$, $f \upharpoonright \beta_{\text{var}}(n) = f_{\text{var}}(n)$. So $f \upharpoonright \beta$ weakens any information above β to β . Let $f \sim_{\beta} g$ if $f \upharpoonright \beta = g \upharpoonright \beta$.

 \sim_{β} satisfies the extension property: If $p_0 \sim_{\beta} p_1$ and $p'_0 \leq p_0$ then $\exists p'_1 \leq p_1$, $p'_0 \sim_{\beta} p'_1$. From this we get the retagging property: If $rk \varphi < \beta$ and $p_0 \sim_{\beta} p_1$, then $p_0 \Vdash \varphi$ iff $p_1 \Vdash \varphi$. Retagging is proved by a straightforward induction, using the extension property in the case of negation. Finally, forcing is definable; more exactly, " $p \Vdash \varphi$ " is $\Delta_1(L_{\beta})$, where $\beta > rk p$, $rk \varphi$, uniformly in β . Again, this is a straightforward induction, except for negation which introduces an unbounded quantifier. In the inductive definition of \parallel instead of defining " $p \Vdash \neg \varphi$ " as " $\forall q \leq p q \not \Downarrow \varphi$ ", let it be " $q \upharpoonright rk \varphi \not \Downarrow \varphi$ ".

Using the definability of \parallel we now show that admissibility is preserved. Suppose $p_0 \parallel \forall n \in \omega \exists x_n \varphi(n, x_n), \beta_0 > \text{rk } p_0$, $\text{rk } \varphi$. To define β_{i+1} , given q, let $\langle q_n, x_n^q \rangle$ be the least such that $q_n \leq q$, and $q_n \parallel \varphi(n, x_n^q)$. Let

$$\beta_{i+1} = \sup\{ \operatorname{rk}\langle q_n, x_n^q \rangle + 1 \mid q \in \mathscr{P}_{\alpha} \cap L_{\beta_i}, n \in \omega \}.$$

Let $\beta = \bigcup_{i \in \omega} \beta_i$. This construction is $\Delta_1(L_{\alpha})$, by the definability of \parallel , so $\beta < \alpha$.

Let $i: \mathscr{P}_{\beta} \hookrightarrow \mathscr{P}_{\alpha}$ be the identity except that all occurrences of ∞ are replaced by β . Identify \mathscr{P}_{β} with its image. Passing to Boolean completions, $\overline{\mathscr{P}_{\beta}}$ is a complete sub-algebra of $\overline{\mathscr{P}_{\alpha}}$, so $G_{\beta} =_{def} G_{\alpha} \cap \mathscr{P}_{\beta}$ is \mathscr{P}_{β} -generic (where G_{α} is \mathscr{P}_{α} -generic).

 $p_0 \models_{\mathfrak{F}} \forall n \in \omega \exists x_n \ \varphi(n, x_n), \text{ by construction, so if } p_0 \in G_\alpha \text{ then } L_{\mathfrak{F}}[g_\beta] \models \forall n \in \omega \exists x_n \ \varphi(n, x_n). \text{ But } \langle L_{\mathfrak{F}}[g_\beta], g_\beta \rangle = \langle L_{\mathfrak{F}}[g_\alpha], g_\alpha \rangle, \text{ so } L_{\alpha}[g_\alpha] \models \forall n \in \omega \exists^{\beta} x_n \ \varphi(n, x_n). \square \text{ Lemma 5}$

Now we code g_{α} into a $p_{\alpha} \subseteq \alpha \Sigma_{m-1} \cup \prod_{m-1}$ -Cohen generically, Δ_m definably, as in the proof of Theorem 1. Let

$$\mathcal{Z}^{\alpha} = \{ p \subseteq \gamma < \alpha \mid \forall \delta \ p \cap \delta \in L_{\delta}[g_{\alpha}] \text{ and } \delta \in \Sigma_{k}\text{-} \text{Adm}(\text{NP}) \\ \text{iff } \delta \in \Sigma_{k}(p)\text{-} \text{Adm}(\text{NP}) \text{ for } k \leq m \ (k < m) \}.$$

 \leq is end-extension. \mathcal{Q}^{α} preserves admissibility, just like \mathcal{P}^{α} from Theorem 1.

Let $\{\alpha_i \mid i < \alpha\} = \vec{\alpha}$ be the club of $\sum_{m-1}(\alpha)$ -stables. Start with $p_0 = \emptyset$. Set $p'_i = p_i \cup \{\alpha_i + g_\alpha(i)\}; p_{i+1} = L[g_\alpha]$ -least $\mathcal{Q}^{\alpha_{i+1}}$ -generic through p'_i over $L_{\alpha_{i+1}}[g_\alpha]; p_\lambda = \bigcup_{i < \lambda} p_i$. We must show that each p_i is a condition, $\vec{\alpha} \upharpoonright \alpha_i$ is $\Delta_m(L_{\alpha_i})$, and generics over β show up shortly beyond β by local countability so the definability conditions of \mathcal{Q}^{α_i} are easily met. We must show that \mathcal{Q}^{α_i} preserves admissibility and non-projectibility up to \sum_{m} -admissibility.

We need to speak about \Vdash_{g^*} in $L[g_{\alpha}]$. Facts like " $p \Vdash_{g^*} \varphi$ " are certainly forced by $g \in G_{\alpha}$; the next lemma shows that g_{α} suffices for finding such g's.

LEMMA 6. Suppose p, φ are names for a condition and a formula for \mathscr{Q}^{β} -forcing ($\beta \leq \alpha$). Then $\forall g \in \mathscr{P}_{\alpha}$

$$g \Vdash p \Vdash \varphi^{*}$$
 iff $g \upharpoonright rk p \Vdash p \Vdash \varphi^{*}$.

(Recall the convention on $\Vdash_{\mathscr{X}}$, from the \mathscr{P}_{α} of Theorem 1: for φ ranked, $p \Vdash \varphi$ iff sup $p > \operatorname{rk} \varphi$ and $L[p] \models \varphi$.)

PROOF. $g \leq g \upharpoonright rk p$, so \leftarrow is trivial.

Suppose $g \Vdash p \Vdash \varphi$. If φ is bounded and $p \Vdash \varphi$, then $\operatorname{rk} p > \operatorname{rk} \varphi$, so $\operatorname{rk} p \Vdash \varphi = \operatorname{rk} p$. By the retagging lemma, $g \upharpoonright \operatorname{rk}(p) \Vdash p \Vdash \varphi$.

If $\varphi = \exists x \varphi'(x)$, let τ be such that $g \Vdash p \Vdash \varphi'(\tau)$. Inductively, $g \upharpoonright rk p \Vdash p \Vdash \varphi'(\tau)$.

If $\varphi = \forall x \varphi'(x)$, let $f \leq g \upharpoonright rk p$. Let $f' \leq f, g' \leq g$ be such that

dom $f' = \text{dom } g', f' \upharpoonright \text{rk } p = g' \upharpoonright \text{rk } p,$ $n \in \text{dom } f'/\text{dom } f \Rightarrow f'_{\text{var}}(n) = \text{rk } p,$ $n \in \text{dom } g'/\text{dom } g \Rightarrow g'_{\text{var}}(n) = \text{rk } p,$ and each of dom f', dom g' is sufficiently larger than dom f, dom g.

Let $\theta: \omega \rightarrow \omega$ be a permutation such that

- (1) $\theta = \text{Id off of dom } g'$,
- (2) $g'_{\text{fixed}}(n) \neq f'_{\text{fixed}}(m) \Rightarrow \theta(n) \neq m$,
- (3) $g'_{\text{fixed}}(n) < f'_{\text{var}}(m) \Rightarrow \theta(n) \neq m$,
- (4) $f'_{\text{fixed}}(m) < g'_{\text{var}}(n) \Rightarrow \theta(n) \neq m$.

 θ induces an automorphism of $\mathscr{P}_{\beta}: \theta(p)(n) = p(\theta^{-1}(n))$. By construction, f' and $\theta(g)$ are compatible; let $f'' \leq f', \theta(g')$.

$$\begin{aligned} f'' \Vdash \theta("p \Vdash \varphi") &= "\theta(p) \Vdash_{\theta(\mathscr{L})} \theta(\varphi)". \\ f'' \Vdash \theta(p) &= p \text{ because if } \theta(n) \neq n \text{ then } f'' \Vdash g_{\theta}(n) \geq \text{rk } p. \end{aligned}$$

Also, $f'' \models \theta(\varphi) = \varphi$ since φ is a formula in the language for $L_{\beta}[p_{\beta}]$. Finally, $\theta(\mathcal{D}^{\beta}) = \mathcal{D}^{\beta}$ because \mathcal{D}^{β} uses G^{β} in its definition only insofar as it considers members of $L_{\delta}[g_{\beta}]$, which are unchanged by the finite permutation θ . So $f'' \models "p \models \varphi$ ". Therefore $g \upharpoonright \operatorname{rk} p \models \varphi$ ". Since φ begins with $\forall, g \upharpoonright \operatorname{rk} p \models \varphi$ ". \Box Lemma 6

LEMMA 7. For
$$\beta = \alpha_{i+1}$$
 (so $\beta \in \Sigma_{m-1}$ -Adm/ Σ_{m-1} -NP), $\beta \in \Sigma_{m-1}(p_{\beta})$ -Adm.

PROOF. Let MC be the Σ_{m-2} master code for L_{β} . L_{β} [MC] is admissible. By Lemma 5, L_{β} [MC, g_{β}] is admissible. By the genericity of p_{β} , L_{β} [MC, g_{β} , p_{β}] is admissible.

Let p, φ range over g_{β} -names for \mathscr{Q}^{β} conditions and $\sum_{m-2} \cup \prod_{m-2} (L_{\beta}[p_{\beta}])$ formulae. $p^{s_{\beta}}, \varphi^{s_{\beta}}$ are their realizations in $L_{\beta}[g_{\beta}]$. Let

$$\mathrm{MC}'_{\mathscr{P}} = \{ \langle g, p, \varphi \rangle \mid g = g \upharpoonright \mathrm{rk} p \land g \models \varphi^* \}.$$

 $MC'_{p_{\beta}}$ is $\Delta_{m-1}(L_{\beta})$, hence $\Delta_1(L_{\beta}[MC])$. In $L_{\beta}[MC, g_{\beta}]$, let

 $\mathrm{MC}_{\mathbf{g}^{\prime}} = \{ \langle p, \varphi \rangle \mid \exists g \text{ compatible with } g_{\beta}, \langle g, p, \varphi \rangle \in \mathrm{MC}_{\mathbf{g}^{\prime}} \}.$

 $MC_{\mathcal{P}}$ is $\Delta_1(L_{\beta}[MC, g_{\beta}])$, so $L_{\beta}[MC_{\mathcal{P}}, p_{\beta}]$ is admissible.

By Lemma 6, MC₂ determines $\parallel_{2} \upharpoonright \Sigma_{m-2} \cup \Pi_{m-2}$. Let

$$\mathrm{MC}_{p_{\mathfrak{g}}} = \{ \varphi \mid \exists p \in p_{\beta} \langle p, \varphi \rangle \in \mathrm{MC}_{\mathfrak{g}} \}.$$

 $MC_{p_{\beta}}$ is $\Delta_1(L_{\beta}[MC_{g^{\beta}}, g_{\beta}])$, so $L_{\beta}[MC_{p_{\beta}}, p_{\beta}]$ is admissible. Furthermore, $MC_{p_{\beta}}$ is the $\Sigma_{m-2}(L_{\beta}[p_{\beta}])$ -master code. Therefore, $L_{\beta}[p_{\beta}]$ is Σ_{m-1} -admissible.

🗆 Lemma 7

LEMMA 8. For $\beta = \alpha_{\lambda}$, λ a limit (so $\beta \in \Sigma_{m-1}$ -NP), $\beta \in \Sigma_{m-1}(p_{\beta})$ -NP.

PROOF. Extend the rank function to all formulae, by setting $\operatorname{rk}(\exists x \varphi) = \operatorname{rk} \varphi$. Let φ be $\sum_{m-1}(L_{\beta}[p_{\beta}])$, $\gamma > \operatorname{rk} \varphi$ a successor $\sum_{m-1}(\beta)$ -stable. Let $\operatorname{MC}'_{g'}$, $\operatorname{MC}_{g'}$, $\operatorname{MC}_{g'}$, be as in Lemma 7, only also allowing $\sum_{m-1} \cup \prod_{m-1}$ formulae. By Lemma 7, there are $g \in G_{\gamma}$, $p \in p_{\gamma}$, $(g, p, \varphi) \in \operatorname{MC}'_{g'}$ or $(g, p, \neg \varphi) \in \operatorname{MC}'_{g'}$. $g = g \upharpoonright \operatorname{rk} p < \gamma$, so $g \in G_{\beta}$, $p \in p_{\beta}$. By stability, $(g, p, (\neg)\varphi) \in \operatorname{MC}'_{g'}$. So \sum_{m-1} truth in $L_{\beta}[p_{\beta}]$ reflects. LEMMA 9. If $\beta = \alpha_{\lambda} \in \Sigma_m$. Adm then $\beta \in \Sigma_m(p_{\beta})$ -Adm.

PROOF. Let $\mathrm{MC}'_{g^{\gamma}}$, $\gamma \leq \beta$, be as in Lemma 8. We have already seen that for $\varphi \in \Sigma_{m-1} \cup \prod_{m-1}, g_{\gamma}$ and p_{γ} determine φ in both $L_{\gamma}[p_{\gamma}]$ and $L_{\beta}[p_{\beta}]$, for γ the least $\Sigma_{m-1}(\beta)$ -stable > rk φ . So $\{\varphi \mid \exists \gamma > \mathrm{rk} \ \varphi, \gamma \Sigma_{m-1}(\beta)$ -stable, $\exists g$ compatible with g_{β} and p with $p_{\beta}\langle g, p, \varphi \rangle \in \mathrm{MC}'_{g^{\gamma}} \} = \mathrm{MC}_{p_{\beta}}$ is the $\Sigma_{m-1}(L_{\beta}[p_{\beta}])$ -master code. The sequence of stables, as well as the $\mathrm{MC}'_{g^{\gamma}}$'s, are $\Delta_m(L_{\beta})$, hence $\Delta_1(L_{\beta}[\mathrm{MC}])$, where MC is the $\Sigma_{m-1}(L_{\beta})$ -master code. $L_{\beta}[\mathrm{MC}]$ is admissible, so $L_{\beta}[\mathrm{MC}, g_{\beta}, p_{\beta}]$ is also, as well as $L_{\beta}[\mathrm{MC}_{p_{\beta}}, p_{\beta}]$. So $L_{\beta}[p_{\beta}]$ is Δ_m -admissible.

Since $\vec{\alpha}$ is $\Delta_m(L_{\alpha})$ and length $\vec{\alpha} = \alpha$, g_{α} is $\Delta_m(L_{\alpha}[p_{\alpha}])$, so $L_{\alpha}[p_{\alpha}]$ is Σ_m -projectible. Using these p_{α} 's, we get the following:

THEOREM 10. Let A be a countable sequence of countable $\Sigma_n(A)$ admissibles. Let m < n. There is an $R \subseteq \omega$ such that $\forall \alpha \leq \sup A$

- (1) $\alpha \in \Sigma_n(R)$ -Adm iff $\alpha \in A$.
- (2) If $\alpha \in \Sigma_n(A)$ -Adm/A then $\alpha \in \Sigma_m(R)$ -Adm/ $\Sigma_m(R)$ -NP.

(3) If $k \leq m$ and $\alpha \in \Sigma_k(A)$ -Adm then $\alpha \in \Sigma_k(R)$ -Adm.

(3) holds because all properties strictly weaker then Σ_m -non-projectibility were preserved everwhere at all times. (2) holds by the construction of p_{α} . (1) holds primarily because for each of the finitely many $\beta > \alpha$ such that $D_{\beta} \cap \alpha \neq \emptyset$, $D_{\beta} \cap \alpha$ is bounded in α . So when α recovers g_{β} (as much as it can) in a Δ_m way, all it gets is $g_{\beta} \cap (\gamma \times \omega)$, some $\gamma < \alpha$, which is set-generic over L_{α} . Set genericity does not impair any closure. The failure of this theorem is that we have no such guarantee for $\alpha \in \Sigma_k(A)$ -Adm/ $\Sigma_n(A)$ -Adm, where m < k < n. There could be a $\beta > \alpha$ such that $L_{\alpha} < \Sigma_{m-1} L_{\beta}$ and order-type $(D_{\beta} \cap \alpha) = \alpha$. In this case, $g_{\beta} \cap (\alpha \times \omega)$ is $\Delta_m(L_{\alpha}[p_{\beta} \cap \alpha])$, and is an injection of α into ω .

The point of this is to sharpen our understanding of these closure properties. Given local countability they fall into a neat linear order based on Comprehension:

 $\Delta_1 \operatorname{Comp} < \Sigma_1 \operatorname{Comp} < \Delta_2 \operatorname{Comp} < \Sigma_2 \operatorname{Comp} < \cdots$

From this picture, one might conjecture homogeneity, in that the passage from one point in this sequence to the next should be just like the passage from any other point to its successor. Our work suggests that this is false, and that Σ_m -admissibles and -non-projectibles are more closely tied than are Σ_m -non-projectibles and Σ_{m+1} -admissibles. Can this be made precise? Is there **R. S. LUBARSKY**

a forcing partial order over which a certain partial genericity preserves Σ_m -admissibility but not Σ_m -non-projectibility?

Along a different line, one can ask about starting with a sequence $A \subseteq \Sigma_n(A)$ -NP.[†] This paper's construction relied on local countability, for the existence of generics. Levy forcing does not always preserve non-projectibility: if $L_{\alpha} \models V = L_{R_{\alpha}}$ and $L_{\alpha}[g] \models V = HC$, then $L_{\alpha}[g] \not\models \Sigma_2$ NP. So if such an α is the first member of A, then A cannot be realized as the Σ_2 -NP spectrum of a real. If we restrict our attention to those sequences which seem not to demand local countability, then S. Friedman has shown [F], [F2] that even for the first case, getting α to be the least R-admissible $> |\alpha|$ for some $R \subseteq |\alpha|$, not all admissibles have such an R. So for a construction without cardinal collapses, or for retaining a sequence of Σ_n -non-projectibles, what are good analogues of the present theorems?

References

[B] Jon Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

[D] Keith Devlin, Aspects of Constructibility, Lecture Notes in Mathematics #354, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

[F1] Sy Friedman, Uncountable admissibles I: Forcing, Trans. Am. Math. Soc. 270 (1982), 61-73.

[F2] Sy Friedman, Uncountable admissibles II: Compactness, Isr. J. Math. 40 (1981), 129-149.

[J] Ronald Jensen, Forcing over admissible sets, with a theorem on countable sequences of admissibles, handwritten notes by K. Devlin, 1972.

[JS] Ronald Jensen and Robert Solovay, Some applications of almost disjoint sets, in Mathematical Logic and Foundations of Set Theory (Bar-Hillel, ed.), North-Holland, Amsterdam-London, 1970, pp. 84-104.

[L] Bob Lubarsky, Admissibility spectra and minimality, Ann. Pure Appl. Logic, to appear.

[MS] Wiktor Marek and Marian Srebrny, Gaps in the constructible universe, Ann. Math. Logic 6 (1974), 359-394.

[Sa] Gerald Sacks, Countable admissible ordinals and hyperdegrees, Advances in Math. 20 (1976), 213-262.

[St] John Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55-74.